Answer on Question \#49062 - Engineering - Other

1. A car of mass 1000 kg is cruising at 120 kmhr . At this velocity the drag and friction forces that the engine needs to work against is equivalent to 450 N .
Q Calculate the kinetic energy of the car when cruising at 120 kmhr .
Give your answer in Joules.
$m=10^{3} \mathrm{~kg}$
$v=120 \frac{\mathrm{~km}}{\mathrm{hr}}=33.3 \frac{\mathrm{~m}}{\mathrm{~s}}$
$E=$

Solution.

The kinetic energy of an object, which has a mass m and moves with the speed v is $E=\frac{m v^{2}}{2}$.

Let check the dimension: $[E]=k g \cdot\left(\frac{m}{s}\right)^{2}=N \cdot m=J$.
Let evaluate the quantity: $\quad E=\frac{10^{3} \cdot 33.3^{2}}{2}=5.54 \cdot 10^{5}(\mathrm{~J})$.
Answer: $5.54 \cdot 10^{5}$ Joules.

