Answer on Question 49037, Physics, Mechanics | Kinematics | Dynamics

Question:

One of the world's largest Ferris wheels, the Cosmo Clock 21 with a radius of 50.0 m is located in Yokohama City, Japan. Each of the sixty gondolas on the wheel takes 1.00 minute to complete one revolution when it is running at full speed. Note: Ignore gravitational effects. What is the centripetal acceleration of the gondola when the Ferris wheel is running at full speed?

Solution:

For the case of circular motion the formula for the centripetal acceleration looks like:

$$
a=\omega^{2} r
$$

where a is the centripetal acceleration, ω is the angular velocity and r is the radius. We know the gondola's frequency of rotation - 1 rpm. So, in order to find the angular velocity we need to convert revolution per minute to revolution per second and use the formula:

$$
\omega=2 \pi f=2 \pi \cdot 0.01666 \mathrm{rps}=0.1047 \frac{\mathrm{rad}}{\mathrm{~s}} .
$$

Therefore, substituting angular velocity to the first formula we can obtain centripetal acceleration:

$$
a=\left(0.1047 \frac{\mathrm{rad}}{\mathrm{~s}}\right)^{2} \cdot 50 \mathrm{~m}=0.548 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} .
$$

Answer:

$a=0.548 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.

http://www.AssignmentExpert.com/

