Answer on Question #49017 - Physics - Mechanics | Kinematics | Dynamics

1. A 14 g block of metal (Cs = 126) heated to 78 is plunged into 405 g of water at 24 degree C. What is the equilibrium temperature? Cs of water is 4190 Jkg-1K-1. Give your answer to 1 decimal place.

 $m_{1} = 0.014 kg$ $T_{1} = 351.1 K$ $c_{1} = 126 \frac{J}{kg \cdot K}$ $m_{2} = 0.405 kg$ $T_{2} = 297.1 K$ $c_{2} = 4190 \frac{J}{kg \cdot K}$ T - ?

The metal block will be cooled, while the cold water will be heated. We can write the heat balance equation:

Solution.

$$m_1c_1(T_1-T) = m_2c_2(T-T_2).$$

Here, c_1 and c_2 are specific heat of metal and water, respectively. One can find the final temperature:

$$T = \frac{m_1 c_1 T_1 - m_2 c_2 T_2}{m_1 c_1 - m_2 c_2}$$

Let check the dimension: $[T] = \frac{kg \cdot \frac{J}{kg \cdot K} \cdot K}{kg \cdot \frac{J}{kg \cdot K}} = K$.

Let evaluate the quantity:

 $T = \frac{0.014 \cdot 126 \cdot 351.1 - 0.405 \cdot 4190 \cdot 297.1}{0.014 \cdot 126 - 0.405 \cdot 4190} = 297.0(K) = 23.9({}^{\circ}C).$

Answer: $23.9 \,{}^{0}C$.

https://www.AssignmentExpert.com