Answer on Question 48973, Physics, Astronomy - Astrophysics
A large number of identical point masses m are placed alone x -axis at $\mathrm{x}=$ $0,1,2,4, \ldots$. The magnitude of gravitational force on mass at origin $(\mathrm{x}=0)$ will be $1 . \mathrm{Gm}^{2} 2$. $(4 / 3) \mathrm{Gm}^{2} 3$. $(2 / 3) \mathrm{Gm}^{2} 4$. (5/4) Gm^{2}
Solution
Gravitational force from single mass is

$$
F=\frac{G m^{2}}{r^{2}}
$$

where r is distance to origin. Hence, we have to sum all the masses, and the force will be

$$
F_{\text {total }}=G m^{2} \sum_{1}^{\infty} \frac{1}{\left(2^{n}\right)^{2}}=G m^{2} \sum_{0}^{\infty} \frac{1}{2^{n+1}}=G m^{2} \sum_{1}^{\infty} \frac{1}{2^{n}}=G m^{2}
$$

Answer is $1 . \mathrm{Gm}^{2}$

