Answer on Question \#48971, Physics, Mechanics | Kinematics | Dynamics

A boatman sails his boat at a speed of 3 km per hour straight to cross a 0.5 km wide river at an angle of 30 degree with the direction of flow whose velocity is 2 km per hour. But the boatman to save his time sails his boat for 5 minutes in this condition. After that he changes the angle to 60 degree and also changes the speed of the boat to 4 km per hour and quickly cross the river. How much time he needed to cross the river totally????

Solution:

The y-component of first velocity is

$$
v_{1 y}=v_{1} \sin \theta_{1}=3 * \sin 30^{\circ}=1.5 \mathrm{~km} / \mathrm{h}
$$

The distance on first part is

$$
y_{1}=v_{1 y} t_{1}=1.5 * \frac{5}{60}=0.125 \mathrm{~km}
$$

The distance on second part is

$$
y_{2}=d-y_{1}=0.5-0.125=0.375 \mathrm{~km}
$$

The y -component of second velocity is

$$
v_{2 y}=v_{1} \sin \theta_{2}=4 * \sin 60^{\circ}=3.464 \mathrm{~km} / \mathrm{h}
$$

Thus,

$$
t_{2}=\frac{y_{2}}{v_{2 y}}=\frac{0.375}{3.464}=0.108 \text { hour }=0.108 * 60 \approx 6.5 \mathrm{~min}
$$

The total time is

$$
t=t_{1}+t_{2}=5+6.5=11.5 \mathrm{~min}
$$

Answer: $t=11.5$ min

