Answer on Question #48917, Physics, Other

Can a vector have a component equal to zero and still have a nonzero magnitude?

Solution:

Yes, a vector can have nonzero magnitude if one of its three component is nonzero e.g. $2\hat{\imath} + 3\hat{\jmath} + 0\hat{k}$ or $2\hat{\imath} + 0\hat{\jmath} + 0\hat{k}$.

If $\mathbf{r} = (x, y, z)$ represents the vector, the length, or magnitude, $r = |\mathbf{r}|$ is

$$r = \sqrt{x^2 + y^2 + z^2}$$

The vector $\mathbf{r} = (2,3,0)$ have magnitude

$$r = \sqrt{2^2 + 3^2 + 0^2} = \sqrt{13}$$

Answer: Yes.

http://www.AssignmentExpert.com/