Answer on Question \#48917, Physics, Other

Can a vector have a component equal to zero and still have a nonzero magnitude?

Solution:

Yes, a vector can have nonzero magnitude if one of its three component is nonzero e.g. $2 \hat{\imath}+3 \hat{\jmath}+0 \hat{k}$ or $2 \hat{\imath}+0 \hat{\jmath}+0 \hat{k}$.

If $\mathbf{r}=(x, y, z)$ represents the vector, the length, or magnitude, $r=|\mathbf{r}|$ is

$$
r=\sqrt{x^{2}+y^{2}+z^{2}}
$$

The vector $\mathbf{r}=(2,3,0)$ have magnitude

$$
r=\sqrt{2^{2}+3^{2}+0^{2}}=\sqrt{13}
$$

Answer: Yes.

