1. A rotating large stone wheel may be used to sharpen knives. The wheel may be thought of as a cylindrical disc with a radius of .375 m . A constant tangential force of 275 N causes the wheel to have an angular acceleration of .85 radians per second. What is the mass of the wheel?
$r=0.375 \mathrm{~m}$
$F=275 N$
$\beta=0.85 \frac{\mathrm{rad}}{\mathrm{s}^{2}}$ m - ?

Solution.
We can write the moment equation for rotation of the wheel: $I \cdot \beta=F \cdot r$, where $I=\frac{m r^{2}}{2}$ is the moment f inertia of a uniform wheel during the rotation around its axis.
$\frac{m r^{2}}{2} \cdot \beta=F \cdot r$, so, the mass of the wheel is $m=\frac{2 F}{\beta r}$.
Let check the dimension: $[\mathrm{m}]=\frac{\mathrm{N}}{\frac{\mathrm{rad}}{\mathrm{s}^{2}} \cdot \mathrm{~m}}=\frac{\mathrm{kg} \cdot \frac{\mathrm{m}}{\mathrm{s}^{2}}}{\frac{\mathrm{~m}}{\mathrm{~s}^{2}}}=\mathrm{kg}$.
Let evaluate the quantity: $m=\frac{2 \cdot 275}{0.85 \cdot 0.375}=1725(\mathrm{~kg})$.
Answer: 1725 kg .

