1. A bucket of oil is released at the top of a building to hit a person. The mass of the bucket with the oil is 2.5 kg and it is attached to a massless string that is wrapped around a cylindrical drum. As the bucket falls, the drum rotates and you may assume that there is no slippage. If the drum has a radius of .85 m and a mass of 12.5 kg , what is the angular speed of the drum after the oil has fallen a distance of 4.5 m ? Use the conservation of energy.
$m=2.5 \mathrm{~kg}$

Solution.

$r=0.85 \mathrm{~m}$ $M=12.5 \mathrm{~kg}$

$h=4.5 \mathrm{~m}$
$\omega-$?

So, the angular acceleration of the drum is constant: $\quad \beta=\frac{2 m g}{M r}$.
The height h is the whole path of the drum's edge: $h=2 \pi r \cdot \alpha=2 \pi r \cdot \frac{\omega^{2}}{2 \beta}$, where α is total angle of the rotation, ω is final angular speed.
$h=2 \pi r \cdot \frac{\omega^{2}}{2 \cdot \frac{2 m g}{M r}}$. Thus, $\omega=\frac{1}{r} \sqrt{\frac{m g h}{\pi M}}$.
Let check the dimension: $[\omega]=\frac{1}{\mathrm{~m}} \sqrt{\frac{\mathrm{~kg} \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot \mathrm{~m}}{\mathrm{~kg}}}=\frac{\mathrm{rad}}{\mathrm{s}}$.
Let evaluate the quantity: $\omega=\frac{1}{0.85} \sqrt{\frac{2.5 \cdot 9.8 \cdot 4.5}{3.14 \cdot 12.5}}=1.97\left(\frac{\mathrm{rad}}{\mathrm{s}}\right)$.
Answer: $1.97 \frac{\mathrm{rad}}{\mathrm{s}}$.

