

Answer on Question #48782 – Physics – Other

1. A bucket of oil is released at the top of a building to hit a person. The mass of the bucket with the oil is 2.5kg and it is attached to a massless string that is wrapped around a cylindrical drum. As the bucket falls, the drum rotates and you may assume that there is no slippage. If the drum has a radius of .85m and a mass of 12.5kg, what is the angular speed of the drum after the oil has fallen a distance of 4.5m? Use the conservation of energy.

$$m = 2.5 \text{ kg}$$

$$r = 0.85 \text{ m}$$

$$M = 12.5 \text{ kg}$$

$$h = 4.5 \text{ m}$$

$$\omega - ?$$

Solution.

Let write the moment equation for the drum rotation: $I \cdot \beta = F \cdot r$,

where $I = \frac{Mr^2}{2}$ is the moment of inertia of a uniform drum during its rotation, the force is the bucket weight $F = mg$.

So, the angular acceleration of the drum is constant: $\beta = \frac{2mg}{Mr}$.

The height h is the whole path of the drum's edge: $h = 2\pi r \cdot \alpha = 2\pi r \cdot \frac{\omega^2}{2\beta}$,

where α is total angle of the rotation, ω is final angular speed.

$$h = 2\pi r \cdot \frac{\omega^2}{2 \cdot \frac{2mg}{Mr}}. \text{ Thus, } \boxed{\omega = \frac{1}{r} \sqrt{\frac{mg h}{\pi M}}}.$$

$$\text{Let check the dimension: } [\omega] = \frac{1}{m} \sqrt{\frac{kg \cdot \frac{m}{s^2} \cdot m}{kg}} = \frac{rad}{s}.$$

$$\text{Let evaluate the quantity: } \omega = \frac{1}{0.85} \sqrt{\frac{2.5 \cdot 9.8 \cdot 4.5}{3.14 \cdot 12.5}} = 1.97 \left(\frac{rad}{s} \right).$$

Answer: $1.97 \frac{rad}{s}$.