1. A bowling ball that weighs 13 pounds is rolled down a ramp. The ball rolls without slipping for 5 m and the angle of the ramp is 35 degrees. If the bowling ball started at rest, determine its angular speed and translational speed at the bottom of the ramp.
$m=13$ pounds $=5.90 \mathrm{~kg}$
$l=5 \mathrm{~m}$

$\varphi=35^{0}$
$\omega, v-$?

We should use the conservation law. The kinetic energy of the ball equals to the change of its potential energy: $\frac{I \omega^{2}}{2}=m g h$, where $I=\frac{2}{5} m r^{2}+m r^{2}=\frac{7}{5} m r^{2}$ is the moment of inertia of a uniform ball during its rolling, the height is $h=\frac{l}{\sin \varphi}$.
The angular speed is connected with the translational speed as $\omega=\frac{v}{r}$. So, $\frac{7}{5} m r^{2} \cdot \frac{(v / r)^{2}}{2}=m g \cdot \frac{l}{\sin \varphi}, \quad v=\sqrt{\frac{10 g l}{7 \sin \varphi}}$.

Let check the dimensions: $[v]=\sqrt{\frac{m}{s^{2}} \cdot m}=\frac{m}{s}, \quad[\omega]=\frac{m}{s}: m=\frac{\mathrm{rad}}{\mathrm{s}}$.
Let evaluate the quantities: $\quad v=\sqrt{\frac{10 \cdot 9.8 \cdot 5}{7 \cdot \sin 35^{0}}}=11.1\left(\frac{\mathrm{~m}}{\mathrm{~s}}\right)$.
Answer: the translational speed is $11.1 \frac{\mathrm{~m}}{\mathrm{~s}}$. For calculating the angular speed of the ball, we must know the ball radius.

