Answer on Question \#48870 - Physics - Mechanics | Kinematics | Dynamics

1. A pilot performs an evasive maneuver by diving vertically at $310 \mathrm{~m} / \mathrm{s}$. If he can withstand an acceleration of 9.0 g 's without blacking out, at what altitude must he begin to pull out of the dive to avoid crashing into the sea?
$v_{0}=310 \frac{\mathrm{~m}}{\mathrm{~s}}$

Solution.

$a=9 g$
$h-?$

A pilot avoids crashing into the sea, if the stop (velocity equals to zero) will be at the

Assuming the fly of the airline to be the motion with constant acceleration, we can connect the displacement and velocities and the acceleration: $s=\frac{v_{1}{ }^{2}-v_{0}{ }^{2}}{2 a}$,
where v_{0} and v_{1} are the initial and final velocity.
The necessary altitude is $h=-s$. So, $h=\frac{v_{0}{ }^{2}-v_{1}{ }^{2}}{18 g}$.
Let check the dimension: $[h]=\frac{(m / s)^{2}}{m / s^{2}}=m$.
Let evaluate the quantity: $\quad h=\frac{310^{2}-0^{2}}{18 \cdot 9.81}=544(m)$.
Answer: 544 m.

