1. A person in an elevator accelerating upwards with an acceleration of $2 \mathrm{~m} / \sec ^{\wedge} \wedge$, tosses a coin vertically upwards with a speed of $20 \mathrm{~m} / \mathrm{sec}$. After how much time will a coin fall back into his hand? $\left(\mathrm{g}=10 \mathrm{~m} / \sec ^{\wedge} 2\right)$: (1) 1.3 ; (2) 2.3 ; (3) 3.3 ; (4) 4.3. All are in seconds.
$a_{0}=2 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
$v=20 \frac{\mathrm{~m}}{\mathrm{~s}}$
$g=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ $m a=F_{z}-m a_{0}$.
($F_{z}=-m g$ is the gravitational force.)
$t-$?
So, the acceleration of the coin is $a=-g-a_{0}$.
v is its initial speed in this reference system.
Let find the time of flying to the highest point (until stopping):
$-g-a_{0}=\frac{0-v}{t}, \quad-g-a_{0}=\frac{0-v}{t_{1}}, \quad t_{1}=\frac{v}{g+a_{0}}$.
The time of returning is twice longer: $t=2 t_{1}, \quad t=\frac{2 v}{g+a_{0}}$.
Let check the dimension: $[t]=\frac{m}{s}: \frac{m}{s^{2}}=s$.
Let evaluate the quantity: $t=\frac{2 \cdot 20}{10+2}=3.33(s)$.
Answer: 3.
