1. A ball is projected from a certain point on the surface of a planet at a certain angle with the horizontal surface. The horizontal and vertical displacement x and y vary with time t in seconds as $\mathrm{x}=10 \sqrt{3 t}$ and $\mathrm{y}=10-\mathrm{t}^{\wedge} 2$. Maximum height attained by the ball?
2. 100 m
3. 75 m
4. 50 m
5. 25 m
$x=10 \sqrt{3 t}$

Solution.

$y=10-t^{2}$
$h_{\text {max }}-?$
Let find the equation of a ball's trajectory. We must eliminate time from two equations.
$t=\frac{x^{2}}{300}, \quad y=10-\left(\frac{x^{2}}{300}\right)^{2}, \quad y=10-\frac{x^{4}}{90000}$.
Now we can find the maximum of the function $y(x)=10-\frac{x^{4}}{90000}$.
As the function $y(x)$ is quadratic, the maximum value of the ordinate is
$y_{\text {max }}=y(0)=10-\frac{0^{4}}{90000}=10(\mathrm{~m})$.
Answer: 10 m .

