Answer on Question 48705, Physics, Mechanics | Kinematics | Dynamics

Question:

When exploring a planet, it was found that a rock dropped from 2.0 meters above the planet's surface took 0.50 s to fall to hit the surface. What is the acceleration due to gravity on that planet?

Solution:

Because the initial velocity of the rock is equals to zero, we can write:

$$
h=\frac{1}{2} g t^{2},
$$

where h is the height from which rock dropped, t is the time that rock took to fall to hit the surface, g is the acceleration of gravity. From this formula we can find g :

$$
g=\frac{2 h}{t^{2}}=\frac{2 \cdot 2.0 m}{(0.5 s)^{2}}=16 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

Answer:

$g=16 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.

