

Answer on Question #48680, Physics, Electromagnetism

Point charges of $2 \times 10^{-9} \text{ C}$ are situated at each of the three corners of a square whose side is 0.20 m . What would be the magnitude and direction of the resultant force on a point charge of $-1 \times 10^{-9} \text{ C}$ if it were placed at the center of the square?

Solution.

Due to superposition principle the resultant force is the sum of three forces:

$$\vec{F}_{res} = \vec{F}_1 + \vec{F}_2 + \vec{F}_3$$

In projections on axes X and Y:

$$F_{res\ x} = F_{1\ x} + F_{2\ x} + F_{3\ x}$$

$$F_{res\ y} = F_{1\ y} + F_{2\ y} + F_{3\ y}$$

All three forces are equal by modulus due to symmetry:

$$F_1 = F_2 = F_3 = \frac{1}{4\pi\epsilon_0} \frac{qQ}{\left(\frac{a\sqrt{2}}{2}\right)^2} = \frac{1}{2\pi\epsilon_0} \frac{qQ}{a^2}$$

So:

$$F_{res\ x} = 0 - \frac{1}{2\pi\epsilon_0} \frac{qQ}{a^2} + \frac{1}{2\pi\epsilon_0} \frac{qQ}{a^2} = 0$$

$$F_{res\ y} = -\frac{1}{2\pi\epsilon_0} \frac{qQ}{a^2} + 0 + 0 = -\frac{1}{2\pi\epsilon_0} \frac{qQ}{a^2}$$

$$F_{res} = \sqrt{F_{res\ x}^2 + F_{res\ y}^2} = \frac{1}{2\pi\epsilon_0} \frac{qQ}{a^2}$$

Numerically:

$$F_{res} = \frac{1}{2 \cdot 3.14 \cdot 8.85 \cdot 10^{-12} \frac{F}{m}} \frac{2 \cdot 10^{-9} C \cdot 1 \cdot 10^{-9} C}{(0.2 m)^2} \approx 9 \cdot 10^{-7} N$$

Answer: $9 \cdot 10^{-7} N$

Direction – opposite to Y axis

<http://www.AssignmentExpert.com/>