Answer on Question \#48634, Physics, Other

In a performance test, each of two cars takes 8.4 s to accelerate from rest to $26 \mathrm{~m} / \mathrm{s}$. Car A has a mass of 1378 kg , and car B has a mass of 1899 kg . Find the net average force that acts on (a) $\operatorname{car} \mathrm{A}$ and (b) car B during the test.

Solution:

The magnitude of the net force is equated to the product of the mass times the acceleration:

$$
F=m a
$$

The acceleration is

$$
a=\frac{v_{f}-v_{i}}{t}
$$

The symbol a stands for the acceleration of the object. And the symbol v stands for the velocity of the object; a subscript of i after the v indicates that the velocity value is the initial velocity value and a subscript of f indicates that the velocity value is the final velocity value.

Thus, for car A:

$$
F_{A}=1378 * \frac{26}{8.4}=4265.24 \mathrm{~N}
$$

Thus, for car B:

$$
F_{B}=1899 * \frac{26}{8.4}=5877.86 \mathrm{~N}
$$

Answer: a) $F_{A}=4265.24 \mathrm{~N}$; b) $F_{B}=5877.86 \mathrm{~N}$.

