

Answer on Question #48589 – Physics – Mechanics | Kinematics | Dynamics

1. A skier starts from rest down a slope 500.0 m long. The skier accelerates at a constant rate of 2.00 m/s². What would the velocity of the skier at the bottom of the slope be.

$$l = 500 \text{ m}$$

$$a = 2 \frac{\text{m}}{\text{s}^2}$$

$$v - ?$$

Solution.

The path of a body during a uniform accelerated motion (with a constant acceleration

a) can be expressed by the initial and final velocities: $l = \frac{v_{1x}^2 - v_{0x}^2}{2a_x}$, $l = \frac{v^2 - 0^2}{2a}$.

The velocity of the skier at the bottom of the slope will be $v = \sqrt{2la}$.

Let check the dimension: $[v] = \sqrt{m \cdot \frac{m}{s^2}} = \frac{m}{s}$.

Let evaluate the quantity: $v = \sqrt{2 \cdot 500 \cdot 2} = 44.7 \left(\frac{m}{s} \right)$.

Answer: $44.7 \frac{\text{m}}{\text{s}}$.