Answer on Question \#48558, Physics, Mechanics - Kinematics - Dynamics

Rain is falling $6 \mathrm{Km} / \mathrm{h}$ making angle 30degree with the vertical towards east. a man is walking on horizontal road towards east $5 \mathrm{Km} / \mathrm{h}$. the speed with which the rain hits the man is approximately...

Solution

Horizontal component of the rain in the man's coordinate system is

$$
v_{x}=v_{x m a n}-v_{x r a i n}=v_{x m a n}-v_{\text {rain }} \sin 30^{\circ}=5 \frac{\mathrm{~km}}{\mathrm{~h}}-6 \frac{\mathrm{~km}}{\mathrm{~h}} \cdot 0.5=2 \frac{\mathrm{~km}}{\mathrm{~h}}
$$

Vertical component of the rain in the man's coordinate system is

$$
v_{y}=v_{y r a i n}=v_{\text {rain }} \cos 30^{\circ}=6 \frac{\mathrm{~km}}{\mathrm{~h}} \cdot 0.5=5.2 \frac{\mathrm{~km}}{\mathrm{~h}}
$$

Therefore, the speed with which the rain hits the man is:

$$
v=\sqrt{v_{x}^{2}+v_{y}^{2}}=\sqrt{\left(2 \frac{\mathrm{~km}}{\mathrm{~h}}\right)^{2}+\left(5.2 \frac{\mathrm{~km}}{\mathrm{~h}}\right)^{2}}=5.6 \frac{\mathrm{~km}}{\mathrm{~h}}
$$

Answer: $v=5.6 \frac{\mathrm{~km}}{\mathrm{~h}}$

