

Answer on Question #48487-Physics-Mechanics-Kinematics-Dynamics

A body of mass m_1 standing on a smooth plane of ice throws a ball of mass m_2 horizontally on the surface of ice. If x be the distance between them after a time t , then find the amount of work done by the boy in throwing the ball?

Solution

The work done by the boy in throwing the ball is equal to the difference of kinetic energy of the system:

$$W = K_f - K_i = \left(\frac{m_1 v_1^2}{2} + \frac{m_2 v_2^2}{2} \right) - 0 = \frac{m_1 v_1^2}{2} + \frac{m_2 v_2^2}{2}.$$

We know that

$$v_1 + v_2 = \frac{x}{t}.$$

From the conservation of momentum:

$$m_1 v_1 = m_2 v_2 \rightarrow v_2 = v_1 \frac{m_1}{m_2}.$$

Thus

$$v_1 + v_1 \frac{m_1}{m_2} = \frac{x}{t} \rightarrow v_1 = \frac{m_2}{m_1 + m_2} \frac{x}{t}; \quad v_2 = \frac{m_1}{m_1 + m_2} \frac{x}{t}.$$

So,

$$W = \frac{m_1}{2} \left(\frac{m_2}{m_1 + m_2} \frac{x}{t} \right)^2 + \frac{m_2}{2} \left(\frac{m_1}{m_1 + m_2} \frac{x}{t} \right)^2 = \frac{m_1 m_2}{m_1 + m_2} \frac{x^2}{2t^2}.$$

Answer: $\frac{m_1 m_2}{m_1 + m_2} \frac{x^2}{2t^2}$.