

### Answer on Question #48471 – Math – Calculus

Suppose an object with initial acceleration of  $10\text{ft/s}^2$  is dropped from 300 ft. above the earth. How far would it travel in the first 2 seconds of its journey? Assume initial velocity is zero.

**Solution:**

$$a = 10 \frac{\text{ft}}{\text{s}^2} - \text{initial acceleration}$$

$$h_1 = 300 \text{ ft} - \text{initial height};$$

$$t = 2\text{s} - \text{time of the journey};$$

$$v_0 = 0 - \text{initial velocity};$$

Equation of motion for the object:

$$\Delta h = h_2 - h_1 = v_0 t + \frac{(a + g)t^2}{2} = 0 + \frac{(a + g)t^2}{2}$$
$$\Delta h(2 \text{ sec}) = \frac{(a - g)t^2}{2} = \frac{\left(10 \frac{\text{ft}}{\text{s}^2} - 32.17 \frac{\text{ft}}{\text{s}^2}\right)(2\text{s})^2}{2} = 44.3 \text{ ft}$$

**Answer:** object will travel distance 44.3 ft.