Answer on Question 48461, Physics, Mechanics | Kinematics | Dynamics

Question:

A particle projected from origin to move in $\mathrm{X}-\mathrm{Y}$ plane, with a velocity $v=3 i+6 x j$, where i, j are the unit vector along X and Y axis. Find the equation of path following by the particle is...

Solution:
The path following by the particle will be :

$$
s=\sqrt{x^{2}+y^{2}},
$$

where x and y are projections of the particle displacement on axes x and y respectively. To find the displacement of particle along axis x and y we use the second equation of motion:

$$
s=v \cdot t+\frac{1}{2} \cdot a \cdot t^{2}
$$

where s is the displacement, v is the initial velocity, t is time, a is acceleration. So, the displacement along axis x would be:

$$
x=3 \cdot t
$$

The component of velocity along the y axis would be: $v=6 j \cdot(3 t)=18 \cdot t$

Assuming that at $t=0$ initial velocity $v=0$ we obtain for displacement along axis y :

$$
y=\frac{1}{2} \cdot a \cdot t^{2}=\frac{1}{2} 18 \cdot t^{2}=9 \cdot t^{2}
$$

Therefore, the equation of path following by the particle would be:

$$
s=\sqrt{x^{2}+y^{2}}=\sqrt{(3 \cdot t)^{2}+\left(9 \cdot t^{2}\right)^{2}}=\sqrt{9 \cdot t^{2} \cdot\left(1+9 \cdot t^{2}\right)}=3 \cdot t \cdot \sqrt{\left(1+9 \cdot t^{2}\right)}
$$

Answer:

$$
s=3 \cdot t \cdot \sqrt{\left(1+9 \cdot t^{2}\right)}
$$

