Answer on Question \#48378, Physics, Mechanics | Kinematics | Dynamics

You are driving at 40 mph which for your tire size equates to $50 \mathrm{rad} / \mathrm{s}$. You accelerate uniformly to a speed of 48 mph in 5 seconds. How many revolutions did your tire make?

Solution:

$$
\begin{gathered}
\text { Linear speed }=\text { radius } \times \text { angular speed } \\
\qquad v=r \omega
\end{gathered}
$$

Thus, the radius of tire is

$$
r=\frac{v}{\omega}=\frac{(40 * 0.44704) \mathrm{m} / \mathrm{s}}{50 \mathrm{rad} / \mathrm{s}}=0.358 \mathrm{~m}
$$

The acceleration is

$$
a=\frac{v-v_{0}}{t}=\frac{(48-40) * 0.44704}{5}=0.715 \mathrm{~m} / \mathrm{s}^{2}
$$

Kinematics equation

$$
S=v_{0} t+\frac{a t^{2}}{2}
$$

where a is acceleration, S is distance, v_{0} is initial velocity and v is final velocity.

$$
S=40 * 0.44704 * 5+\frac{0.715 * 5^{2}}{2}=98.36 \mathrm{~m}
$$

The number of revolutions is

$$
N=\frac{S}{2 \pi r}=\frac{98.36}{2 \pi * 0.358}=43.7 \approx 44 \mathrm{rev}
$$

Answer: $N=44$ rev

