

Answer on Question #48310-Physics-Mechanics-Kinematics-Dynamics

A car initially traveling eastward turns north by traveling in a circular path at uniform speed as in the figure below. The length of the arc ABC is 258 m, and the car completes the turn in 33.0 s.

- What is the acceleration when the car is at B located at an angle of 35.0°? Express your answer in terms of the unit vectors \hat{i} and \hat{j} .
- Determine the car's average speed.
- Determine its average acceleration during the 33.0-s interval.

Solution

The length of the arc is for a 90 degree or $\left(\frac{\pi}{2}\right)$ radians is

$$l = r\theta = 258 \left(\frac{\pi}{2}\right) = 405.3 \text{ m.}$$

So the constant speed is

$$v = \frac{l}{t} = \frac{405.3}{33.0} = 12.3 \frac{\text{m}}{\text{s}}.$$

Acceleration at a uniform speed on a circular curve is

$$a = \frac{v^2}{r} = \frac{12.3^2}{258} = 0.59 \frac{\text{m}}{\text{s}^2},$$

and the direction will be towards the center of the curve which will be perpendicular to the instantaneous velocity:

$$\theta = 35^\circ + 90^\circ = 125^\circ.$$

The acceleration when the car is at B located at an angle of 35.0° is

$$\vec{a} = a(\cos 125^\circ \hat{i} + \sin 125^\circ \hat{j}) = 0.59(\cos 125^\circ \hat{i} + \sin 125^\circ \hat{j}) \frac{\text{m}}{\text{s}^2} = (-0.34\hat{i} + 0.48\hat{j}) \frac{\text{m}}{\text{s}^2}.$$

Answer: (a) $(-0.34\hat{i} + 0.48\hat{j}) \frac{\text{m}}{\text{s}^2}$; (b) $12.3 \frac{\text{m}}{\text{s}}$; (c) $0.59 \frac{\text{m}}{\text{s}^2}$.