## Answer on Question \#48289, Physics, Mechanics | Dynamics | Kinematics

we know if u go upper from earth the acceleration due to gravity decreases and increases when we move from upper to earth. if a lift moves up with $2 \mathrm{~m} / \mathrm{s}^{\wedge} 2$ acceleration then why the neat acceleration is $(g+a)=(g+2)$ here. the lift goes up from earth so the $g$ should decrease. but why it increase here.please explain.

If we go upper from earth the acceleration due to gravity decreases only if the distance is ~Earth's radius. For small movements we can assume that it's a constant. If a lift moves up with acceleration, by the second Newton's law:

$$
N-m g=m a \rightarrow N=m(g+a)
$$

Where N is a weight of an object.
In this case this will be the same the same force as an object is in a gravity with $(g+a)$.
However, it doesn't mean that the acceleration due to gravity is changed. The force is increased, total acceleration is increased, but not the acceleration due to gravity.

