Answer on Question \#48261-Physics-Molecular Physics-Thermodynamics

The heat absorbed by a mole of an ideal gas in a quasistatic process in which temperature changes by $d T$ and volume V changes by $d V$ is given by

$$
\delta Q=C d T+\bar{P} d V
$$

where C is its constant molar heat capacity at constant volume, and $\bar{P}=\frac{R T}{V}$ is the mean pressure.
Find the change in entropy of this gas in a quasistatic process which takes it from initial values of temperature T_{i} and volume V_{i} to the final values of temperature T_{f} and volume V_{f}. Does your answer depend upon the process involved in going from initial to final state?

Solution

$$
d S=\frac{\delta Q}{T}=\frac{C d T+\bar{P} d V}{T}=\frac{C d T}{T}+\frac{\bar{P}}{T} d V
$$

But

$$
\frac{\bar{P}}{T}=\frac{\frac{R T}{V}}{T}=\frac{R}{V}
$$

The change in entropy of this gas in a quasistatic process is

$$
\Delta S=\int_{T_{i}}^{T_{f}} \frac{C d T}{T}+\int_{V_{i}}^{V_{f}} \frac{R d V}{V}=C \ln \frac{T_{f}}{T_{i}}+R \ln \frac{V_{f}}{V_{i}}
$$

As we can see it doesn't depend upon the process involved in going from initial to final state.

