Answer on Question \#48256 - Physics - Mechanics | Kinematics | Dynamics

What is scalar product or dot product?
What is vector product or cross product?

Solution:

Dot product

The dot product can be defined for two vectors \bar{x} and \bar{y} by

$$
\bar{x} \cdot \bar{y}=|x| \cdot|y| \cdot \cos \theta
$$

where θ is the angle between the vectors and $|x|$ is the norm. It follows immediately that $\bar{x} \cdot \bar{y}=0$ if \bar{x} is perpendicular to \bar{y}.

The dot product therefore has the geometric interpretation as the length of the projection of \bar{x} onto the unit vector \hat{y} when the two vectors are placed so that their tails coincide.

Cross product

For vectors $\mathrm{u}=\left(\mathrm{u}_{\mathrm{x}}, \mathrm{u}_{\mathrm{y}}, \mathrm{u}_{\mathrm{z}}\right)$ and $\mathrm{v}=\left(\mathrm{v}_{\mathrm{x}}, \mathrm{v}_{\mathrm{y}}, \mathrm{v}_{\mathrm{z}}\right)$ in \mathbb{R}^{3}, the cross product in is defined by

$$
\begin{gathered}
u \times v=\hat{x}\left(u_{y} v_{z}-u_{z} v_{y}\right)-\hat{y}\left(u_{x} v_{z}-u_{z} v_{x}\right)-\hat{z}\left(u_{x} v_{y}-u_{y} v_{x}\right)= \\
\quad=\hat{x}\left(u_{y} v_{z}-u_{z} v_{y}\right)+\hat{y}\left(u_{z} v_{x}-u_{x} v_{z}\right)+\hat{z}\left(u_{x} v_{y}-u_{y} v_{x}\right)
\end{gathered}
$$

where $(\hat{x}, \hat{y}, \hat{z})$ is a right-handed, i.e., positively oriented, orthonormal basis. This can be written in a shorthand notation that takes the form of a determinant

$$
u \times v=\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
u_{x} & u_{y} & u_{z} \\
v_{x} & v_{y} & v_{z}
\end{array}\right|
$$

where \hat{x}, \hat{y} and \hat{z} are unit vectors. Here, $u \times v$ is always perpendicular to both u and v, with the orientation determined by the right-hand rule.

