Answer on Question \#48148 - Physics - Mechanics | Kinematics | Dynamics

1. A body falls freely from top for a tower. It covers 36% of total height in last second before stricking the ground level. A height of tower is?
$\eta=0.36$

Solution.

$t_{0}=1 s$
$h-?$

Let introduce the coordinate system, so that Y-axis is directed vertically upwards and zero level corresponds the ground.

The coordinate of a body obeys the following law: $y=h-\frac{g t^{2}}{2}$,
where h is the tower height.
The total time of falling (at that time $y=0$): $t_{1}=\sqrt{\frac{2 h}{g}}$.
According to the task, $y\left(t_{1}-t_{0}\right)-y\left(t_{1}\right)=\eta \cdot h,\left[h-\frac{g}{2}\left(\sqrt{\frac{2 h}{g}}-t_{0}\right)^{2}\right]-0=\eta \cdot h$.
Solving the last equation, one can obtain the height: $\quad h=\frac{g}{2}\left(\frac{t_{0}}{1 \pm \sqrt{1-\eta}}\right)^{2}$.
Let check the dimension: $[h]=\frac{m}{s^{2}} \cdot s^{2}=m$.
Let evaluate the quantity:
$h=\frac{9.81}{2} \cdot\left(\frac{1}{1-\sqrt{1-0.36}}\right)^{2}=122.6(m), \quad h=\frac{9.81}{2} \cdot\left(\frac{1}{1+\sqrt{1-0.36}}\right)^{2}=1.51(m)$.
Answer: 122.6 m or 1.51 m .

