Answer on Question \#48144 - Physics - Other

Jake walks east through a passenger car on a train that moves $10 \mathrm{~m} / \mathrm{s}$ in the same direction. Jake's speed relative to the car is $2 \mathrm{~m} / \mathrm{s}$. Jake's speed relative to an observer at rest outside the train is?

Solution:

$v_{t}=10 \frac{\mathrm{~m}}{\mathrm{~s}}-$ velocity of the train;
$\mathrm{v}_{\mathrm{J}, \mathrm{c}}=2 \frac{\mathrm{~s}}{\mathrm{~m}}-$ Jake'speed relative to the car;
$\mathrm{v}_{\mathrm{c}}-$ Jake'speed relative to the train;
Answer:
Formula for the relative speed:

$$
\begin{gathered}
\mathrm{v}_{\mathrm{J}, \mathrm{t}}=\mathrm{v}_{\mathrm{J}}-\mathrm{v}_{\mathrm{t}} \\
\mathrm{v}_{\mathrm{J}}=\mathrm{v}_{\mathrm{J}, \mathrm{t}}+\mathrm{v}_{\mathrm{t}}=10 \frac{\mathrm{~m}}{\mathrm{~s}}+2 \frac{\mathrm{~m}}{\mathrm{~s}}=12 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{gathered}
$$

Answer: Jake's speed relative to the observer is equal to $12 \frac{\mathrm{~m}}{\mathrm{~s}}$

