

Answer on Question #48128 – Physics – Mechanics | Kinematics | Dynamics

1. A 125 kg box is slung down a 27 degree ramp at a constant velocity of 1.12 m/s. What is the friction force acting on it?

$$\begin{array}{l} m = 125 \text{ kg} \\ \varphi = 27^\circ \\ v = 1.12 \text{ m/s} \\ \hline F - ? \end{array}$$

Solution.

Let write down the equation of the motion of the box (Newton 2-nd law) onto the X - and Y -axes (X -axis is directed along the plane and Y -axis goes in the perpendicular direction upward): $m \vec{a} = m \vec{g} + \vec{N} + \vec{F}$,

where \vec{F} is the friction force.

As the velocity of the box is constant, the acceleration equals to zero ($\vec{a} = 0$).

Then, write down this law in projectives:

$$\begin{cases} m \cdot 0 = mg \sin \alpha - F \\ m \cdot 0 = -mg \cos \alpha + N \end{cases}$$

One can obtain the friction force from the first equation of the system: $F = mg \sin \alpha$.

Let check the dimension: $[F] = m \cdot \frac{m}{s^2} = N$.

Let evaluate the quantity: $F = 125 \cdot 9.81 \cdot \sin 27^\circ = 557 \text{ (N)}$.

Answer: 557 N .