

Answer on Question #48123 – Physics – Mechanics | Kinematics | Dynamics

Question.

The velocity of a body moving in straight line with a constant acceleration is 10 m/s at a certain instant "t". After 5 secs the velocity becomes 20 m/s, the velocity 3 secs before t was?

Given:

$$v(t) = 10 \frac{m}{s}$$

$$v(t + 5) = 20 \frac{m}{s}$$

$$a = \text{const}$$

Find:

$$v(t - 3) = ?$$

Solution.

By definition the acceleration is:

$$a = \frac{dv}{dt} = \frac{v(t + \Delta t) - v(t)}{\Delta t}$$

In our case, $\Delta t = 5$

$$a = \frac{dv}{dt} = \frac{v(t + \Delta t) - v(t)}{\Delta t} = \frac{v(t + 5) - v(t)}{5}$$

Calculate:

$$a = \frac{20 - 10}{5} = 2 \frac{m}{s^2}$$

So, we found the acceleration. And now we can define the velocity in any instant, because the acceleration is constant. We can express the acceleration as following:

$$a = \frac{dv}{dt} = \frac{v(t + \Delta t) - v(t)}{\Delta t}$$

Therefore,

$$v(t + \Delta t) = v(t) + a\Delta t$$

Let use $\Delta t = -3$:

$$v(t - 3) = v(t) - 3a$$

Calculate:

$$v(t - 3) = 10 - 3 \cdot 2 = 4 \frac{m}{s}$$

Answer.

$$v(t - 3) = 4 \frac{m}{s}$$