Answer on Question 48122, Physics, Other

Question:

The speed of train is reduced from $60 \mathrm{~km} / \mathrm{hr}$ at the same time as it travels a distance of 450 m . If the retardation is uniform, find how much further it will travel (approx) before coming to rest?

Solution:

We have velocity at the initial moment of time v_{0}, then train begin its retardation on distance $x=450 \mathrm{~m}$ to speed v_{1}. We need to determine the time $t_{\text {rest }}$ needed to stop after train travels distance x. Because from the conditions of question we don't know the velocity v_{1}, we find $t_{\text {rest }}$ in symbolic form. First we find acceleration:

$$
a=\frac{\left(v_{0}^{2}-v_{1}^{2}\right)}{2 \cdot x}
$$

Then we can determine time from retardadion begins to stop train:

$$
t_{\text {stop }}=\frac{v_{0}}{a}
$$

Also we find time that needs train to travel distance x :

$$
t_{x}=\frac{v_{0}-v_{1}}{a}
$$

Therefore we can obtain the time $t_{\text {rest }}$:

$$
t_{\text {rest }}=t_{\text {stop }}-t_{x}=\frac{v_{1}}{a}=\frac{2 \cdot x \cdot v_{1}}{\left(v_{0}^{2}-v_{1}^{2}\right)}
$$

Answer:

$t_{\text {rest }}=\frac{2 \cdot x \cdot v_{1}}{\left(v_{0}^{2}-v_{1}{ }^{2}\right)}$

