Answer on Question \#48118, Physics, Molecular Physics

An ideal gas is enclosed in a container of volume V at pressure P. It is being pump out of the container by using a pump with stroke volume V_{1}. what is the final pressure in container after n stroke of the pump?

Solution:

Before doing n strokes, the parameters of the system were P, V.
After doing n strokes, parameters became $\mathrm{V}-\mathrm{n} \mathrm{V}_{1}, \mathrm{P}_{1}$, where P_{1} is unknown.
An ideal gas can be characterized by three state variables: absolute pressure (P), volume (V), and absolute temperature (T). The relationship between them may be deduced from kinetic theory and is called the ideal gas law:

$$
P V=v R T
$$

Since the temperature is constant, $\mathrm{PV}=$ const .
Thus,

$$
\begin{gathered}
P V=P_{1}\left(V-n V_{1}\right) \\
P_{1}=\frac{P V}{V-n V_{1}}
\end{gathered}
$$

this is the final pressure after n-stroke.

