Answer on Question 47905, Physics, Mechanics | Kinematics | Dynamics

Question:

A boat propelled so as to travel with a speed of $0.50 \mathrm{~m} / \mathrm{s}$ in still water, moves directly (in a straight line) across a river that is 60 m wide. The river flows with a speed of $0.30 \mathrm{~m} / \mathrm{s}$. How long in seconds does it take the boat to cross the river?

Solution:

Let the $\overrightarrow{V_{b}}$ is the boat speed in still water, $\overrightarrow{V_{b}}$ is the speed of river and $\overrightarrow{V_{n e t}}$ is the net speed of the boat, and let us build the vector diagram. In order to find $\overrightarrow{V_{n e t}}$ we apply the Pythagorean theorem:

$$
V_{n e t}=\sqrt{\left(V_{b}\right)^{2}-\left(V_{r}\right)^{2}}=\sqrt{\left(0.5 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}-\left(0.3 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}=0.4 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Now when we obtain the net speed of the boat, we can find the time that take the boat to cross the river:

$$
t=\frac{S}{V_{\text {net }}}=\frac{60 \mathrm{~m}}{0.4 \frac{\mathrm{~m}}{\mathrm{~s}}}=150 \mathrm{~s}
$$

Answer:

$t=150 s$

