Answer on Question \#47792 - Physics - Mechanics | Kinematics | Dynamics

Decent vehicle is traveling vertical@ $5.5 \mathrm{~m} / \mathrm{s}$ and has horizontal velocity of $3.5 \mathrm{~m} / \mathrm{s}$. What speed and angle is descent path

Solution:

$V_{y}=5.5 \frac{\mathrm{~m}}{\mathrm{~s}}-$ vertical component of the speed;
$V_{x}=3.5 \frac{\mathrm{~m}}{\mathrm{~s}}-$ horizontal component of the speed;
V - speed of the vehicle;
$\alpha-$ angle between speed components;

Using Pythagoras's theorem for the right triangle, we can find speed of the vehicle:

$$
V=\sqrt{V_{x}^{2}+V_{y}^{2}}=\sqrt{\left(5.5 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}+\left(3.5 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}=6.52 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

To find angle α, we can use the tangent definition (from the right triangle):

$$
\begin{gathered}
\tan \alpha=\frac{V_{y}}{V_{x}} \\
\alpha=\arctan \left(\frac{V_{y}}{V_{x}}\right)=\arctan \left(\frac{5.5 \frac{\mathrm{~m}}{\mathrm{~s}}}{3.5 \frac{\mathrm{~m}}{\mathrm{~s}}}\right)=57.5^{\circ}
\end{gathered}
$$

Answer: speed: $6.52 \frac{\mathrm{~m}}{\mathrm{~s}}$, angle 57.5°;

