## Answer on Question \#47775, Physics, Other

In an experiment to determine the period of oscillation of a loaded spiral spring, the equation of a simple harmonic oscillator

$$
a=(-k / m) \times x \text {, }
$$

where the symbols have their usual meaning, was used. Write down the equation for the angular frequency $\omega$ in terms of $k$ and $m$, the effective mass of the system.

## Solution:

Displacement of a spring can be given by

$$
x=A * \operatorname{Cos}(\omega t)
$$

where $A$ is the Amplitude of motion and $\omega$ is the angular frequency

Now Differenting once will give velocity;

$$
v=-A \omega \operatorname{Sin}(\omega t)
$$

and again to give acceleration

$$
a=-A \omega^{2} \operatorname{Cos}(\omega t)
$$

Now substituting our formula for Acceleration and displacement into our equation of motion

$$
a+\frac{k}{m} x=0
$$

Gives

$$
-A \omega^{2} \operatorname{Cos}(\omega t)+\frac{k}{m} A \operatorname{Cos}(\omega t)=0
$$

Which can be rearranged to

$$
A\left(-\omega^{2}+\frac{k}{m}\right) \operatorname{Cos}(\omega t)=0
$$

Can get rid of the A and $\operatorname{Cos}(\omega t)$ which leaves

$$
-\omega^{2}+\frac{k}{m}=0
$$

which can be rearranged to

$$
\omega=\sqrt{\frac{k}{m}}
$$

Answer: $\quad \omega=\sqrt{\frac{k}{m}}$

