Answer on Question \#47774, Physics, Other

Three forces P, Q and R are acting at a point in a plane. The angle between $P \& Q, Q \& R$ are 150 degrees \& 120 degrees respectively. Then for equilibrium, are forces $P, Q \& R$ in the ratio?

Solution:

Draw the diagram to represent P, Q and R in the plane, say $O P Q R$, with O as origin and $O P$ along x axis say. O is initial point and P is terminal point for the vector P. Similar thing holds good for other vectors Q and R.

- Note that the angle ROP $=360\left(-(150+120)=90^{\circ}\right.$
- Represent vector R or $O R$ as $P R^{\prime}$, so that the line segment $P R^{\prime}$ is parallel to OR.
- By triangle law $\mathrm{P}+\mathrm{R}=\mathrm{OR}{ }^{\prime}$
- OR' must be opposite and equal to Q in order to keep the particle at O in equilibrium
- So angle POR' $=30^{\circ}$
-

- Let $|\mathrm{P}|,|\mathrm{Q}||\mathrm{R}|$ bet the respective magnitudes
- Apply sine rule to the force triangle OPR'

$$
O R^{\prime}=\frac{|R|}{\sin 30^{\circ}}=\frac{|P|}{\sin 60^{\circ}}=|Q|
$$

or

$$
\frac{|P|}{1}=\frac{|Q|}{2}=\frac{|R|}{\sqrt{3}}
$$

Answer: 1: 2: $\sqrt{3}$

