Answer on Question \#47660 - Physics - Other

Question.

The position of a particle is given by $x=(8.4 \mathrm{~cm}) \cos (6.0 \mathrm{t})$, where t is in seconds. What is the frequency of the particle's motion? What is the period of the particle's motion? What is the amplitude of the particle's motion?

Given:
$x=(8.4 \mathrm{~cm}) \cos (6 t)$
Find:
$f=$?
$T=$?
$A=$?

Solution.

Mathematically, the most basic wave has the following form:

$$
x=A \cos \omega t
$$

A is the amplitude;
ω is the angular frequency.

So, in our case we have:

$$
\begin{gathered}
A=8.4 \mathrm{~cm} \\
\omega=6 \mathrm{~Hz}
\end{gathered}
$$

And we can express frequency f and period T through the angular frequency ω :

$$
\omega=\frac{2 \pi}{T}=2 \pi f
$$

Therefore,

$$
\begin{aligned}
& T=\frac{2 \pi}{\omega}=\frac{6.28}{6}=1.047 \mathrm{~s} \\
& f=\frac{\omega}{2 \pi}=\frac{6}{6.28}=0.955 \mathrm{~Hz}
\end{aligned}
$$

Answer.

$$
\begin{aligned}
f & =0.955 \mathrm{~Hz} \\
T & =1.047 \mathrm{~s} \\
A & =8.4 \mathrm{~cm}
\end{aligned}
$$

