Answer on Question \#47648 - Physics - Mechanics, Kinematics, Dynamics

Question.

A mass of 0.50 kg is hung from a spring with spring constant $15.4 \mathrm{~N} / \mathrm{m}$. What is the period of oscillation? What is the frequency of oscillation for the hanging mass?

Given:
$m=0.5 \mathrm{~kg}$
$k=15.4 \frac{\mathrm{~N}}{\mathrm{~m}}$
Find:
$T=? v=$?

Solution.

By definition the period of a harmonic oscillator can be approximated by:

$$
T=2 \pi \sqrt{\frac{m}{k}}
$$

And we know that

$$
v=\frac{1}{T}=\frac{1}{2 \pi} \sqrt{\frac{k}{m}}
$$

Calculate:

$$
\begin{aligned}
& T=2 \pi \sqrt{\frac{0.5}{15.4}}=1.132 \mathrm{~s} \\
& v=\frac{1}{2 \pi} \sqrt{\frac{15.4}{0.5}}=0.883 \mathrm{~Hz}
\end{aligned}
$$

Answer.

$T=2 \pi \sqrt{\frac{m}{k}}=1.132 \mathrm{~s}$
$v=\frac{1}{2 \pi} \sqrt{\frac{k}{m}}=0.883 \mathrm{~Hz}$

