Answer on Question \#47645 - Physics - Other

Question.

A pendulum set up in the stairwell of a tall building consists of a heavy weight suspended on a 34.7 m wire. Using $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s} 2$ find the frequency of oscillation.
A) 0.3 s
B) 0.5 s
C) 0.085 s
D) 11.82 s

Given:

$L=34.7 \mathrm{~m}$
$g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
Find:
$v=?$

Solution.

By definition the period of a pendulum can be approximated by:

$$
T=2 \pi \sqrt{\frac{L}{g}}
$$

And we know that

$$
v=\frac{1}{T}
$$

So,

$$
v=\frac{1}{2 \pi} \sqrt{\frac{g}{L}}
$$

Calculate:

$$
\begin{gathered}
v=\frac{1}{6.28} \sqrt{\frac{9.8}{34.7}}=\frac{1}{6.28} \cdot 0.5314=0.0846 \mathrm{~Hz} \approx 0.085 \mathrm{~Hz}=0.085 \mathrm{~s}^{-1} \\
T=\frac{1}{v}=\frac{1}{0.0846}=11.82 \mathrm{~s}
\end{gathered}
$$

Answer.

The frequency of oscillation is:
$v=\frac{1}{2 \pi} \sqrt{\frac{g}{L}}=0.085 \mathrm{~s}^{-1}$
C) 0.085 s

The period of oscillation is:
$v=2 \pi \sqrt{\frac{L}{g}}=11.82 \mathrm{~s}$
D) 11.82 s

