Answer on Question \#47617-Physics-Optics

Determine distance and height of the image formed when an object of height $h_{1}=20 \mathrm{~cm}$ and a distance of $s_{1}=20 \mathrm{~cm}$ is placed in front of a concave surface with $n_{2}=1.45$ that has a $r=7.20 \mathrm{~cm}$ radius. (We use $n_{1}=1.00029$ for air)?

Solution

Use the equation for refraction at a single surface to relate the image and object distances:

$$
\frac{n_{1}}{s_{1}}+\frac{n_{2}}{s_{2}}=\frac{n_{2}-n_{1}}{r} .
$$

Solving for s_{2} yields:

$$
s_{2}=\frac{n_{2}}{\frac{n_{2}-n_{1}}{r}-\frac{n_{1}}{s_{1}}}=\frac{1.45}{\frac{1.45-1.00029}{-0.072}-\frac{1.00029}{0.2}}=-13 \mathrm{~cm} .
$$

where the minus sign tells us that the image is 13 cm in front of the surface and is virtual. Find the magnification:

$$
M=-\frac{s_{2}}{s_{1}}=-\frac{(-13 \mathrm{~cm})}{20 \mathrm{~cm}}=0.65 .
$$

The height of the image is

$$
h_{2}=M h_{1}=0.65 \cdot 20 \mathrm{~cm}=13 \mathrm{~cm} .
$$

