Answer on Question \#47505-Physics-Mechanics-Kinematics-Dynamics

Two bodies A and B of equal masses m lie on a smooth frictionless horizontal table. They are initially separated by a distance $2 l$ and are connected by a thread of length $2 l$. The thread is pulled at its midpoint O by a constant force F at right angle to $A B$. Find the acceleration of A and B in the direction at right angles to the direction of F as a function of the displacement (x) of the midpoint O

Solution

When the thread is pulled the tensions T of the halves of the thread acts on bodies A and B . In y -direction (at right angle to $A B$):

$$
F=2 T \cos \alpha,
$$

where $\cos \alpha=\frac{x}{l}$.
In z-direction (at right angles to the direction of F):

$$
m a_{z}=T \sin \alpha .
$$

The acceleration of A and B in the direction at right angles to the direction of F is

$$
a_{z}=\frac{T}{m} \sin \alpha=\frac{F}{2 m} \frac{\sin \alpha}{\cos \alpha}=\frac{F}{2 m} \frac{\sqrt{1-\left(\frac{x}{l}\right)^{2}}}{\frac{x}{l}}=\frac{F}{2 m} \sqrt{\left(\frac{l}{x}\right)^{2}-1} \text {, when } x \leq l \text { and } 0 \text { when } x>l .
$$

Answer: $\begin{cases}\frac{F}{2 m} \sqrt{\left(\frac{l}{x}\right)^{2}-1} & x \leq l \\ 0, & x>l .\end{cases}$

