Answer on Question \#47321, Physics, Mechanics | Kinematics | Dynamics

Question:

A body moving with uniform acceleration travels a distance $\mathrm{Sn}=(0.4 \mathrm{n}+9.8) \mathrm{m}$ in nth sec. find the initial velocity of the body in $\mathrm{ms}-1$?

Answer:

Distance covered during $\mathrm{n}^{\text {th }}$ second equals:

$$
S_{n}=\left(v_{0} t_{n}+\frac{a t_{n}^{2}}{2}\right)-\left(v_{0} t_{n-1}+\frac{a t_{n-1}^{2}}{2}\right)
$$

where

$$
t_{n}=1 s \cdot n, \quad t_{n-1}=1 s \cdot(n-1)
$$

Therefore:

$$
S_{n}=v_{0} \cdot 1 s+a \cdot n \cdot(1 s)^{2}-\frac{a(1 s)^{2}}{2}=\left(v_{0}-\frac{a}{2}\right)+a n
$$

Comparing with $\mathrm{Sn}=(0.4 \mathrm{n}+9.8)$

$$
\begin{gathered}
a=0.4 \\
v_{0}=\frac{a}{2}+9.8=10 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{gathered}
$$

Answer: $10 \mathrm{~m} / \mathrm{s}$

