Answer on Question \#47254 - Physics - Other

Question.

A person has to pull a large rock up a hill. The rock has a mass of $2.00 \times 10^{\wedge} 2 \mathrm{~kg}$ and the person drags it up an incline of 5 degrees. There is a coefficient of kinetic friction of 0.600 between the rock and the ground. If the person is dragging it upwards at a constant velocity, what is the tension of the rope between the person and the rock?

Given:
$m=200 \mathrm{~kg}$
$\theta=5^{\circ}$
$\mu=0.6$
$v=$ const
Find:
$T=$?

Solution.

Fig. 1. The force diagram.

Let remember the second Newton's law:

$$
\sum \vec{F}=m a
$$

But in our case we have the constant velocity $\rightarrow a=0$. So, we have $\sum \vec{F}=0$
We have 3 forces acting on the rock: the gravity force, the kinetic friction force and the tension of the rope. Therefore,

$$
\vec{F}_{g r}+\vec{F}_{f r}+\vec{T}=0
$$

Let project all acting forces on the selected axis of motion:

$$
T=T
$$

$$
\begin{gathered}
F_{g r}=-m g \sin \theta ; \\
F_{f r}=-\mu N=-\mu m g \cos \theta
\end{gathered}
$$

Finally, we received:

$$
\begin{gathered}
T-m g \sin \theta-\mu m g \cos \theta=0 \\
T=m g \sin \theta+\mu m g \cos \theta=m g(\sin \theta+\mu \cos \theta)
\end{gathered}
$$

Calculate:

$$
T=200 \cdot 9.8 \cdot\left(\sin 5^{\circ}+0.6 \cdot \cos 5^{\circ}\right)=1960 \cdot(0.087+0.598)=1342.6 N
$$

Answer.

$T=m g(\sin \theta+\mu \cos \theta)=1342.6 N$
http://www.AssignmentExpert.com/

