Answer on Question \#47248 - Physics - Other

Question.

A droid was initially stationary and has a mass of 75.0 kg and the application of the force amounts to a constant force of $3.00 \times 10^{\wedge} 2 \mathrm{~N}$, how fast is the droid moving when it slams into a wall a distance of 5.00 m from its initial location?

Given:
$v_{0}=0$
$m=75 \mathrm{~kg}$
$F=3 \cdot 10^{2} N$
$L=5 \mathrm{~m}$
Find:
$v=$?

Solution.

As we know from the basic of kinematics:

$$
v=v_{0}+a t,
$$

where a is the acceleration.
In our case, a droid was initially stationary $\rightarrow v_{0}=0$. So,

$$
v=a t
$$

Let remember the second Newton's law:

$$
F=m a \rightarrow a=\frac{F}{m}
$$

And the distance travelled can be defined the following:

$$
L=v_{0} t+\frac{a t^{2}}{2} ; v_{0}=0 \rightarrow L=\frac{a t^{2}}{2} \rightarrow t=\sqrt{\frac{2 L}{a}}
$$

Thus,

$$
v=a t=a \sqrt{\frac{2 L}{a}}=\sqrt{2 a L}=\sqrt{\frac{2 F L}{m}}
$$

Calculate:

$$
v=\sqrt{\frac{2 \cdot 300 \cdot 5}{75}}=\sqrt{40}=6.325 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Answer.

$$
v=\sqrt{\frac{2 F L}{m}}=6.325 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

