Answer on Question \#47242 - Physics - Mechanics | Kinematics | Dynamics

a man walk up a stationry escalator in 90 sec when this man stands on a moving escalator he goes up in 60sec the time taken by the man to walk up the moving escalator is?

Solution:

Let the distance of the escalator be S;
u-velocity of the escalator;
v-velocity of the man;
$t_{1}=90 s$ - time to walk up stationary escalator;
$t_{2}=60 \mathrm{~s}$ - time to stand on a moving escalator;
t_{3} - time to go up on a moving escalator;
On a stationary escalator:

$$
\begin{array}{r}
t_{1}=\frac{S}{v} \\
v=\frac{S}{t_{1}} \tag{1}
\end{array}
$$

On a moving escalator:

$$
\begin{array}{r}
t_{2}=\frac{S}{u} \\
u=\frac{S}{t_{2}} \tag{2}
\end{array}
$$

Walking up on a moving escalator:

$$
\begin{gather*}
t_{3}=\frac{S}{u+v} \tag{3}\\
(1) \operatorname{and}(2) \operatorname{in}(3): \\
t_{3}=\frac{S}{\frac{S}{t_{1}}+\frac{S}{t_{2}}}=\frac{S}{\frac{S\left(t_{1}+t_{2}\right)}{t_{1} t_{2}}}=\frac{t_{1} t_{2}}{t_{1}+t_{2}}=\frac{90 \mathrm{~s} \cdot 60 \mathrm{~s}}{90 \mathrm{~s}+60 \mathrm{~s}}=36 \mathrm{~s}
\end{gather*}
$$

Answer: 36 sec

