Answer on Question \#47214 - Physics - Mechanics | Kinematics | Dynamics

Sally travels by car from one city to another. She drives for 30.0 min at $76.0 \mathrm{~km} / \mathrm{h}, 39.0 \mathrm{~min}$ at $32.0 \mathrm{~km} / \mathrm{h}$, and 11.0 min at $33.0 \mathrm{~km} / \mathrm{h}$, and she spends 14.0 min eating lunch and buying gas.
(a) Determine the average speed for the trip?

Solution:

Time $t_{1}=0.5$ hour at velocity $V_{1}=76 \frac{\mathrm{~km}}{\mathrm{~h}}$;
Time $t_{2}=0.65$ hour at velocity $V_{2}=32 \frac{\mathrm{~km}}{\mathrm{~h}}$;
Time $t_{3}=0.183$ hour at velocity $V_{3}=33 \frac{\mathrm{~km}}{\mathrm{~h}}$;
Time $t_{4}=0.23$ hour at velocity $V_{4}=0$;
The average speed is the total distance divided by the total travel time.

$$
\begin{equation*}
V_{a}=\frac{S}{t} \tag{1}
\end{equation*}
$$

The total distance is

$$
\begin{equation*}
\mathrm{S}=\mathrm{S}_{1}+\mathrm{S}_{2}+\mathrm{S}_{3}+\mathrm{S}_{4}=\mathrm{V}_{1} \mathrm{t}_{1}+\mathrm{V}_{2} \mathrm{t}_{2}+\mathrm{V}_{3} \mathrm{t}_{3}+\mathrm{V}_{4} \mathrm{t}_{4} \tag{2}
\end{equation*}
$$

The total time is

$$
\begin{gathered}
\mathrm{t}=\mathrm{t}_{1}+\mathrm{t}_{2}+\mathrm{t}_{3}+\mathrm{t}_{4} \\
(3) \operatorname{and}_{4}(2) \mathrm{in}(1): \\
\mathrm{V}_{\mathrm{a}} \mathrm{t}_{1}+\mathrm{V}_{2} \mathrm{t}_{2}+\mathrm{V}_{3} \mathrm{t}_{3}+\mathrm{V}_{4} \mathrm{t}_{4} \\
\mathrm{t}_{1}+\mathrm{t}_{2}+\mathrm{t}_{3}+\mathrm{t}_{4}
\end{gathered}=.
$$

Answer: average speed for the trip is $41.5 \frac{\mathrm{~km}}{\mathrm{~h}}$

