Answer on Question \#47018 - Physics - Mechanics | Kinematics | Dynamics

A bullet is fired on a horizontal from 1.50 m . If it his a target 0.50 m high that is a 100 m away, how fast is the bullet traveling

Solution:

$\mathrm{h}_{1}=1.5 \mathrm{~m}$ - initial height;
$\mathrm{h}_{2}=0.5 \mathrm{~m}-$ final height;
$\mathrm{D}=100 \mathrm{~m}$ - distance to the target;
v - velocity of the bullet;
t - time of travelling;
Equation of motion of the bullet along the X -axis:

$$
\begin{align*}
& \quad D=v t \\
& t=\frac{D}{v} \tag{1}
\end{align*}
$$

Equation of motion of the bullet along the Y -axis:

$$
\begin{gather*}
\mathrm{h}_{1}-\mathrm{h}_{2}=\frac{\mathrm{gt}^{2}}{2} \tag{2}\\
\text { (1) } \operatorname{in}(2): \\
\mathrm{h}_{1}-\mathrm{h}_{2}=\frac{\mathrm{g}\left(\frac{\mathrm{D}}{\mathrm{v}}\right)^{2}}{2} \\
\mathrm{~h}_{1}-\mathrm{h}_{2}=\frac{g D^{2}}{2 \mathrm{v}^{2}} \\
\mathrm{v}^{2}=\frac{\mathrm{gD}^{2}}{2\left(\mathrm{~h}_{1}-\mathrm{h}_{2}\right)} \\
\mathrm{v}=\sqrt{\frac{\mathrm{gD}^{2}}{2\left(\mathrm{~h}_{1}-\mathrm{h}_{2}\right)}}=\sqrt{\frac{9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot(100 \mathrm{~m})^{2}}{2(1.5 \mathrm{~m}-0.5 \mathrm{~m})}}=221 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{gather*}
$$

Answer: velocity of the bullet is equal to $221 \frac{\mathrm{~m}}{\mathrm{~s}}$.

