## Answer on Question \#47017, Physics, Mechanics | Kinematics |

 Dynamics
## Question:

Dear expert, please provide an answer to the question below within 12 hours.
Two forces are of magnitude 450 N and 240 N respectively. Determine
\{a\} the maximum magnitude of the resultant force
\{b\} the minimum magnitude of the resultant
\{c\}the resultant force when the forces act at right angles to each other.
\{d\} Use scaled vector diagram to determine the resultant of [c] above and compare your results

## Answer:

We have 2 vectors $\overrightarrow{F_{1}}$ and $\overrightarrow{F_{2}}$ and their resultant force $\vec{F}$. Magnitude of $\vec{F}$ equals:

$$
c=\sqrt{a^{2}+b^{2}+2 a b \cos \alpha}
$$

where $\alpha$ - angle between $\overrightarrow{F_{1}}$ and $\overrightarrow{F_{2}}$.
a) F is maximum if $\cos \alpha=1$ :

$$
F=F_{1}+F_{2}=450+240=690 \mathrm{~N}
$$

b) F is maximum if $\cos \alpha=-1$ :

$$
F=F_{1}-F_{2}=450-240=210 \mathrm{~N}
$$

c) when the forces act at right angles to each other $\cos \alpha=0$ :

$$
F=\sqrt{F_{1}^{2}+F_{2}^{2}}=\sqrt{450^{2}+240^{2}}=510 \mathrm{~N}
$$

d)


Length of $F_{1}+F_{2}$ around 51 units, therefore:

$$
F_{1}+F_{2} \cong 510 \mathrm{~N}
$$

http://www.AssignmentExpert.com/

