Answer on Question \#47014-Physics-Mechanics-Kinematics-Dynamics

A sonometer wire under a tension of $T=40 N$, vibrates in unison with a tuning fork of frequency $N=$ 384 Hz . find the number of beats produced in 2 sec when the tension in the wire is reduced by 1.24 N .

Solution

Let N is a frequency of tuning fork. Then frequency of wire when a tension is 40 N is N .
The frequency of wire when a tension is reduced by 1.24 N is $\mathrm{N}-\mathrm{k}$. Hence,

$$
\begin{gathered}
N=\frac{1}{2 L} \sqrt{\frac{T}{m}} ; N-k=\frac{1}{2 L} \sqrt{\frac{T-\Delta T}{m} .} \\
\frac{N-k}{N}=\sqrt{\frac{T-\Delta T}{T}} \rightarrow k=N\left(1-\sqrt{\frac{T-\Delta T}{T}}\right)=384\left(1-\sqrt{\frac{40-1.24}{40}}\right)=6 \frac{\text { beats }}{s}=12 \frac{\text { beats }}{2 \mathrm{~s}} .
\end{gathered}
$$

Answer: 12.
2.] A conical pendulum has length 1 m and bob of mass 0.1 kg the angular speed of the bob is $14 / \mathrm{V} 10$ $\mathrm{rad} / \mathrm{sec}$, find the tension in the string.

Solution

The object is subject to two forces: the gravitational force $m g$ which acts vertically downwards, and the tension force T which acts upwards along the string. The tension force can be resolved into a component $T \cos \theta$ which acts vertically upwards, and a component $T \sin \theta$ which acts towards the centre of the circle. Force balance in the vertical direction yields

$$
T \cos \theta=m g
$$

Since the object is executing a circular orbit, radius r, with angular velocity ω, it experiences a centripetal acceleration $\omega^{2} r$. Hence, it is subject to a centripetal force $m \omega^{2} r$. This force is provided by the component of the string tension which acts towards the centre of the circle. In other words,

$$
T \sin \theta=m \omega^{2} r
$$

Note that if l is the length of the string then $r=l \sin \theta$. It follows that

$$
T=m \omega^{2} l=0.1 \cdot\left(\frac{14}{\sqrt{10}}\right)^{2} \cdot 1=1.96 N
$$

Answer: 1.96 N.

