Answer on Question \#46942, Physics, Electric Circuits

Question:

Two equally charged particles are held 3.2103 m apart and then released from rest. The initial acceleration of the first particle is observed to be $7.0 \mathrm{~m} / \mathrm{s} 2$ and that of the second to be $9.0 \mathrm{~m} / \mathrm{s} 2$. If the mass of the first particle is 6.3107 kg , what are
(a) the mass of the second particle
(b) the magnitude of the charge of each particle?

Answer:

Newton's third law of motion:

$$
F_{21}=F_{12}=F
$$

a) Newton's second law of motion:

$$
F=m_{1} a_{1}=m_{2} a_{2}
$$

Therefore:

$$
m_{2}=m_{1} \frac{a_{1}}{a_{2}}=6.3 \cdot 10^{7} \mathrm{~kg} \frac{7}{9}=4.9 \cdot 10^{7} \mathrm{~kg}
$$

b) Coulomb's law:

$$
F=\frac{k q^{2}}{r^{2}}
$$

From Newton's second law of motion

$$
F=m_{1} a_{1}
$$

Therefore:

$$
\begin{gathered}
\frac{k q^{2}}{r}=m_{1} a_{1} \\
q=\sqrt{\frac{m_{1} a_{1} r^{2}}{k}}=\sqrt{\frac{6.3 \cdot 10^{7} 7\left(3.210^{3}\right)^{2}}{910^{9}}}=708 \mathrm{C}
\end{gathered}
$$

