Answer on Question \#46897-Physics-Other

A bomb of mass $m_{0}=1 \mathrm{~kg}$ initially at rest, explodes and breaks into 3 fragments of masses in the ratio 1:1:3. The two pieces of equal mass fly off perpendicular to each other with speed $v=15 \frac{\mathrm{~m}}{\mathrm{~s}}$ each. The speed of heavier fragment is
(1) $5 \frac{\mathrm{~m}}{\mathrm{~s}}$
(2) $15 \frac{\mathrm{~m}}{\mathrm{~s}}$
(3) $45 \frac{\mathrm{~m}}{\mathrm{~s}}$
(4) $5 \sqrt{2} \frac{\mathrm{~m}}{\mathrm{~s}}$

Solution

Initial mass $m_{0}=1 \mathrm{~kg}$. The three masses into which it breaks is $m=\frac{1}{5} m_{0}, m=\frac{1}{5} m_{0}$, and $3 m=\frac{3}{5} m_{0}$.

The initial moment of a bomb is zero. That's why vertical and horizontal components of final moment of a system are zero too. The horizontal components of final moment is

$$
m v \cos 45+m v \cos 45-3 m u=0 \rightarrow 2 \frac{v \sqrt{2}}{2}=3 u \rightarrow u=\frac{v \sqrt{2}}{3}=\frac{15 \sqrt{2}}{3}=5 \sqrt{2} \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Answer: (4) $5 \sqrt{2} \frac{m}{s}$.

